2-1 ニューラルネットワーク の復習 『ゼロから作るDeep Learning 2』
hr.icon
目次
1.1.1 ベクトルと行列
1.1.2 行列の要素ごとの演算
1.1.3 ブロードキャスト
1.1.4 ベクトルの内積と行列の積
1.1.5 行列の形状チェック
1.2 ニューラルネットワークの推論
1.2.1 ニューラルネットワークの推論の全体図
1.2.2 レイヤとしてのクラス化と順伝播の実装
1.3 ニューラルネットワークの学習
1.3.2 微分と勾配
1.3.5 勾配の導出と逆伝播の実装
1.3.6 重みの更新
1.4 ニューラルネットワークで問題を解く
1.4.1 スパイラル・データセット
1.4.2 ニューラルネットワークの実装
1.4.3 学習用のソースコード
1.4.4 Trainerクラス
1.5 計算の高速化
1.5.1 ビット精度
1.6 まとめ